Виды конденсаторов, их классификация. Конденсаторы для «чайников». Конденсатор: что это такое и для чего он нужен

Что такое конденсатор?

Содержание

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.

Модель простейшего конденсаторного устройства
Модель простейшего конденсаторного устройства
Рис. 2. Модель простейшего конденсаторного устройства

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10-6 F), нанофарады ( 1 нФ = 10-9 F = 10-3 мкФ), пикофарады (1 пкФ = 10-12 F = 10-6  мкФ). Очень редко применяют величину милифараду (1 мФ = 10-3 Ф).

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.

Конструкция радиального электролитического конденсатора
Конструкция радиального электролитического конденсатора
Рис. 3. Конструкция радиального электролитического конденсатора

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.

Обозначение полярности выводов
Обозначение полярности выводов
Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

Из чего состоит конденсатор

Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.

Что такое конденсатор
Что такое конденсатор

намажем его сгущенкой

Что такое конденсатор
Что такое конденсатор

 и сверху положим точно такой же блин

Что такое конденсатор
Что такое конденсатор

Должно выполняться условие: эти два блина не должны прикасаться  друг  с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный “блинный конденсатор” :-).

Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее. К каждой металлической пластине подсоединены проводки – это выводы конденсатора.

Схематически все это выглядит примерно вот так.

строение конденсатора
строение конденсатора

Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.

Конденсатор в цепи постоянного и переменного тока

Поскольку между обкладками конденсатора находится диэлектрик, то электрический ток от одной пластинки к другой протекать не может, следовательно, образуется разрыв электрической цепи для постоянного и для переменного тока.

Поэтому уверенно можем сказать, что конденсатор не пропускает постоянный ток! Переменный ток он также не пропускает, однако переменный ток постоянно перезаряжает накопитель, что создает картину, будь-то переменный тока проходит сквозь обкладки конденсатора.

Если к обкладкам разряженного конденсатора приложить постоянное напряжение, то в цепи начнет протекать электрический ток. По мере его заряда ток будет снижаться и при равности напряжений на пластинках и источника питания, ток перестанет протекать – образуется как бы разрыв электрической цепи.

В чем отличие полярного и неполярного?

Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.

Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.

Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.

Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.

У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.

Watch this video on YouTube
Что такое конденсатор, виды конденсаторов и их применение

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Пусковой конденсатор с проводами
Пусковой конденсатор с проводами
Пусковой конденсатор с проводами

Как проверить деталь

Как проверить конденсатор
Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр. Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – как прозванивать мультиметром, как и при проверке резисторов – что такое резистор.

Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем.

После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.

Интересно почитать: все об электролитических конденсаторах.

Поведение конденсатора в цепях постоянного и переменного тока

В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.

При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.

Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.

Виды конденсаторов в зависимости от конструкции

Прежде чем переходить к классификации, нужно отметить, что пластины конденсаторов правильнее называть обкладками. Это обусловлено тем, что не всегда используются именно пластины.

Электролитические конденсаторы (оксидные)

Электролитические конденсаторы (оксидные) — это разновидность конденсаторов, в которых диэлектриком между обкладками является пленка оксида металла, где анод выполнен из металла, а катод представляет собой твердый, жидкий или гелевый электролит.

электролитические конденсаторы

В алюминиевых электролитических конденсаторах используется алюминиевая фольга, свернутая для экономии пространства в рулон, а в качестве второй обкладки используется жидкий электролит. Такие конденсаторы имеют достаточно большую емкость, так как электролит ввиду своего агрегатного состояния очень плотно прилегает к первой обкладке. А разделяет эти слои тончайший диэлектрик в виде оксидной пленки на алюминиевой фольге.

Электролитические (оксидные) конденсаторы имеют полярность («+», «-»), и ее нужно соблюдать при подключении. При смене полярности из-за химических процессов слой оксидной пленки разрушается, но электролит подобран таким образом, что при повторном подключении уже с правильной полярностью разрушенные участки оксидной пленки восстанавливаются.

Восстановительный процесс называется анодированием. При этом выделяется газ, и конденсатор может вздуться. На электролитических конденсаторах сверху делаются насечки, чтобы при сильном вздутии он не взорвался, а просто раскрылся в этом ослабленном месте.

Из недостатков электролитических (оксидных) конденсаторов можно также выделить, что из-за свернутой в рулон обкладки она имеет паразитную индуктивность. Из-за такой индуктивности на высокой частоте конденсатор может вести себя как дроссель. Такие конденсаторы ввиду неидеальности электролита как проводника также имеют паразитное сопротивление. Данное сопротивление со временем увеличивается из-за высыхания электролита.

К электролитическим конденсаторам относятся и следующие типы:

  • В танталовых конденсаторах в роли анода (обкладки, к которой подключается плюсовой контакт) используется танталовая губка, которая находится в среде электролита (катода). Обкладки разделяет оксидная пленка на металле. Танталовые конденсаторы не подвержены паразитной индуктивности и используются в высокочастотных цепях.
  • В ниобиевых электролитических конденсаторах пассивированный металлический ниобий или монооксид ниобия рассматривается в качестве анода, а на анод добавляется изолирующий слой пятиокиси ниобия, так что он действует как диэлектрик. Твердый электролит укладывается на поверхность оксидного слоя, который действует как катод. Основным преимуществом ниобиевых конденсаторов является способность выдерживать высокие температуры во время пайки и довольно большая удельная емкость. Данные компоненты легко встраиваются в печатную плату и требуют соблюдения идеальной полярности. Любое обратное напряжение или ток пульсации, превышающий указанный разрушит диэлектрик и сам конденсатор.

Керамические конденсаторы

Керамический конденсатор — это накапливающий электронный компонент, у которого диэлектриком служит керамика на основе титанатов циркония (ZrTiO3), кальция (CaTiO3), никеля (NiTiO3) и бария (BaTiO3) (в особых случаях применяют конденсаторную керамику на базе Al2O3, SiO2, MgO).

Керамические конденсаторы дополнительно можно разделить на два подвида: 

керамические конденсаторы

  • Дисковые керамические конденсаторы состоят из двух обкладок, которые разделены между собой керамическим диэлектриком.
  • В многослойных элементах обкладки представлены в виде пачек из металлических пластин, которые входят друг в друга, и которые все так же разделены керамическим диэлектриком.

В отличие от электролитических конденсаторов, керамические имеют меньшую емкость. При этом они более надежны и не имеют паразитной индуктивности, так как обкладки не свернуты в рулон. А благодаря современным технологическим процессам в какой-то степени нивелируется недостаток с малой емкостью (конденсаторы могут иметь емкость десятки микрофарад).

Основной недостаток данного типа конденсаторов кроется в самой керамике. Такой диэлектрик очень сильно подвержен термическому воздействию. От перепадов температуры меняется емкость конденсатора. Также в зависимости от приложенного напряжения емкость может колеблется.

Существуют более качественные керамические диэлектрики — керамика первого класса. С такими изоляторами описанные выше проблемы исчезают. Но ухудшается показатель емкости к объему, и увеличивается цена компонента.

Пленочные конденсаторы

Для того, чтобы избежать недостатков керамических конденсаторов, применяют другой тип — пленочные, которые используют в качестве диэлектрика между обкладок пленку из разных материалов (полистирол, полипропилен, тефлон).

пленочные конденсаторы

Пленочные конденсаторы можно считать почти идеальными. Они очень стабильно держат емкость, не имеют индуктивности, умеют самостоятельно восстанавливаться после пробоя. Но, к сожалению, их соотношение емкости к объему одно из самых худших. Их используют в ответственных и важных местах схем, где нужно пожертвовать пространством на плате в угоду надежности и стабильности.

Классификация по принципу действия

Самый простой конденсатор еще называется сухим, или твердотельным, потому что все материалы его твердые и самые обыкновенные. Зная описание, его можно изготовить вручную. В качестве изолятора берется бумажная лента, но так как она гигроскопична, то ее пропитывают парафином или маслом.

Конденсатор изнутри
Конденсатор изнутри
Конденсатор изнутри

Сухие конденсаторы

Сухие или мокрые конденсаторы — зависит от заполнения между пластинами. Для сухих это может быть бумага, керамика, слюда, пластик (полиэстер, полипропилен). У каждого из диэлектриков свои физические свойства.

Наиболее прочные (керамика) хорошо сопротивляются физическому разрушению и пробою. Пластичные допускают наносить обкладки в виде металлического напыления прямо на слой диэлектрика, что позволяет идти по пути микроминиатюризации.

Разновидности сухих конденсаторов и их различные формы и исполнения
Разновидности сухих конденсаторов и их различные формы и исполнения
Разновидности сухих конденсаторов и их различные формы и исполнения

Типы конденсаторов с другими состояниями компонентов

Кроме твердого диэлектрика, бывают конденсаторы с диэлектриком:

  • жидким;

Конденсатор с жидким диэлектриком
Конденсатор с жидким диэлектриком
Конденсатор с жидким диэлектриком

  • газообразным (наполненные инертным газом для защиты электродов);

Конденсатор с газообразным диэлектриком
Конденсатор с газообразным диэлектриком
Конденсатор с газообразным диэлектриком

  • вакуумным;

С вакуумным диэлектриком
С вакуумным диэлектриком
С вакуумным диэлектриком

  • воздушным.

С воздушным диэлектриком
С воздушным диэлектриком
С воздушным диэлектриком

Однако и электроды бывают не всегда вполне твердые.

Электролитические конденсаторы

Для создания большой емкости используют методы сближения обкладок не механические, а химические. Пользуясь тем, что алюминиевая фольга всегда на воздухе покрывается слоем диэлектрика (Al2O3), к алюминиевому электроду вплотную приближают жидкий электрод в виде электролита. Тогда толщина изолирующего промежутка исчисляется атомными расстояниями, и это резко увеличивает емкость.

Электролитический конденсатор

d – толщина диэлектрика

Так как на нижней поверхности верхней обкладки имеется слой оксида, диэлектрика, то именно его толщину и следует считать d — толщиной диэлектрика. Нижним электродом является нижняя обкладка, плюс слой электролита, которым пропитана бумага.

В электролитических конденсаторах заряд создается не только свободными электронами металла, но еще и ионами электролита. Поэтому важна полярность подключения.

Кроме электролитических конденсаторов, использующих в качестве изоляции оксид металла, по такому же принципу работают полевые (МОП) транзисторы. Они в электронных схемах часто и используются в качестве конденсаторов, имеющих емкость в несколько десятков нанофарад.

Еще аналогичный принцип работы у конденсаторов оксидно-полупроводниковых, в которых вместо жидкого электролита — твердый полупроводник. Но этими типами не исчерпываются конденсаторы, слой диэлектрика у которых имеет микроскопическую толщину.

Суперконденсатор, или ионистор

Возможен еще вариант создания слоя, играющего роль диэлектрика, в жидком электролите. Если залить им поверхность некоего пористого проводника (активированного угля), то при наличии на нем заряда ионы противоположного знака из электролита «прилипают» к проводнику. А к ним, в свою очередь, присоединяются другие ионы. И все вместе образует многослойную конструкцию, способную накапливать электрические заряды.

Как путешествуют ионы
Как путешествуют ионы
Как путешествуют ионы

Процессы в жидком электролите особого состава для суперконденсаторов уже напоминают нечто, что происходит в электролитах аккумуляторов. Ионистор и по своим характеристикам приближается к аккумуляторам, кроме того, его зарядка проходит легче и быстрее. И в них в циклах зарядки/разрядки не происходит порчи электродов, как это обычно бывает в аккумуляторах.

Ионисторы более надежные, долговечные, и ими как устройствами питания оснащают электротранспортные средства. А пористое вещество электродов дает просто колоссальную площадь поверхности. Вместе с наноскопически малой толщиной изолирующего слоя в электролите это и создает гигантскую емкость суперконденсаторов (ультраконденсаторов) — фарады, десятки и сотни фарад. Выпускается множество различных суперконденсаторов, некоторые по виду не отличаются от аккумуляторов.

Классификация по применению

Большинство конденсаторов изготовляются для использования в отлаженных, настроенных электрических схемах и цепях. Но во многих схемах производится настройка электрических или частотных параметров. Конденсаторы для этой цели очень удобны: можно менять емкость без изменения электрических контактов между обкладками.

По этому признаку конденсаторы бывают постоянными, переменными и подстроечными.

Как работают различные конденсаторы
Как работают различные конденсаторы
Как работают различные конденсаторы

Подстроечные обычно исполняются в миниатюрном виде и предназначены для постоянной работы в схемах после небольшой предварительной оптимизирующей подстройки. Переменные имеют более широкие диапазоны параметров, чтобы проводить систематическую настройку (например, поиск волны в радиоприемнике).

По диапазону напряжений

Диапазон рабочих напряжений — очень важная характеристика конденсатора. В электронных схемах напряжения обычно небольшие. Верхняя граница — около 100 вольт. Но схемы электропитания, различные блоки питания, выпрямители, стабилизаторы приборов требуют установки конденсаторов, которые могли бы выдерживать напряжения до 400–500 вольт — с учетом возможных всплесков, и даже до 1000 вольт.

Но в сетях передачи электроэнергии напряжения бывают гораздо выше. Существуют высоковольтные конденсаторы специального исполнения.

Использование конденсатора вне его диапазона напряжений грозит пробоем. После пробоя устройство становится просто проводником и свои функции выполнять перестает. Особенно это опасно там, где конденсатор устанавливается для развязки схем по току, как отделяющий постоянное напряжение от переменной составляющей. В этом случае пробой грозит той части схемы, куда после этого хлынет постоянное напряжение: могут гореть другие элементы, может быть поражение электрическим током. Для электролитических конденсаторов это явление грозит еще и взрывом.

Высоковольтные конденсаторы
Высоковольтные конденсаторы
Высоковольтные конденсаторы

Слева – до 35 кВ, справа – до 4 кВ

Так как для пробоя на высоком напряжении нужен определенный минимум расстояния между проводниками, обычно для высоковольтного исполнения приборы и выполняются значительными по размерам. Или бывают изготовлены из определенных стойких к пробою материалов: керамические и … метало-бумажные. Разумеется, все в соответствующем по свойствам корпусе.

Подстроечные конденсаторы

Подстроечные конденсаторы
Подстроечные конденсаторы

Подстроечные конденсаторы используются в узлах окончательной настройки радиоэлектронной аппаратуры. Чаще всего они встречаются в различного рода колебательных контурах или в устройствах, связанных с формированием частоты; в измерительных приборах. Также можно найти их в щупах цифровых осциллографов. Там они используются для устранения собственной емкости измерительных щупов, что позволяет максимально исключить погрешности при выполнении измерений высокочастотных сигналов.

Характеристики и параметры

Исчерпывающую информацию о типе и технических характеристиках конденсатора любой пользователь может получить на корпусе устройства, где также иногда указывается производитель прибора и дата его изготовления.

Важнейшим параметром любого конденсатора является его номинальная ёмкость. Правила обозначения номиналов ёмкости описываются в действующих нормативах ГОСТа. Согласно положениям ГОСТа, номинальная ёмкость конденсаторов до 9999 пФ обозначается на схемах без указания единицы измерения. Ёмкость устройств номиналом более 9999 пФ и до 9999 мкФ обозначается на схемах с указанием единицы измерения. Следующая характеристика, указываемая на корпусе устройства – допустимое отклонение от номинальных значений.

Второй по важности величиной конденсатора является его номинальное напряжение. Они могут быть предназначены для работы в сетях с разным напряжением: от 5 до 1000 В и более

Специалисты рекомендуют выбирать устройства с запасом по номинальному напряжению. Использование устройств низкого номинала может приводить к возникновению пробоев диэлектрика и выходу из строя приборов.

Остальные параметры считаются дополнительными и не всегда важными, потому на корпусах некоторых устройств описание может ограничиваться ёмкостью и номинальным напряжением. Если дополнительные технические характеристики указаны, то на корпусе можно найти также рабочую температуру устройства, рабочий номинальный ток и другие данные.

Следует учитывать также, что представленные сегодня на рынке конденсаторы могут быть трехфазными и однофазными, предназначенными для внешней или внутренней установки.

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

Маркировка СМД(SMD) конденсаторов.

Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.
A 1,0
B 1,1
C 1,2
D 1,3
E 1,5
F 1,6
G 1,8
H 2,0
J 2,2
K 2,4
L 2,7
M 3,0
N 3,3
P 3,6
Q 3,9
R 4,3
S 4,7
T 5,1
U 5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.

максимальное рабочее напряжение конденсатора
максимальное рабочее напряжение конденсатора
максимальное рабочее напряжение конденсатора

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

типы электрических зарядов
типы электрических зарядов

Давайте еще раз рассмотрим простую модель конденсатора.

модель конденсатора
модель конденсатора

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

заряжаем конденсатор
заряжаем конденсатор

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

заряженный конденсатор
заряженный конденсатор

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь?

Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

формула емкости конденсатора
формула емкости конденсатора

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Поляризация диэлектрика

Такое явление называется накоплением электрических зарядов. А конденсатор называют накопителем электрического поля, так как вокруг каждого заряд действует электрическое поле, под действием которого диэлектрик поляризуется, то есть молекулы его становятся полярными – имеют четко выраженные положительный и отрицательный полюса.

Полюса молекул непроводящего вещества ориентированы вдоль линий электрического поля, созданного зарядами, расположенными на обкладках. Причем отрицательный полюс молекулы направлен к положительной пластинке, а положительный – к отрицательной.

Способность накапливать электрические заряды характеризуется емкостью конденсатора, отсюда происходит обозначение его на чертежах электрических схем C ( англ. capacitor – накопитель). Аналогично емкости сосуда – чем больше емкость сосуда, тем больше в нем помещается жидкости.

Емкость конденсатора относится к главному параметру и измеряется в фарадах [Ф], названная в честь выдающегося английского физика Майкла Фарадея.

Следует обратить внимание: правильно говорить не «один фарад», а «одна фарада».

Емкостью в одну фараду обладает конденсатор, который накапливает заряд, величиной в один кулон, если приложит к пластинкам напряжение один вольт.

Формула емкости конденсатора | Емкость, напряжение, заряд,
Формула емкости конденсатора | Емкость, напряжение, заряд,

Ранее часто можно было услышать такое утверждение, что емкость в 1 Ф – это очень много – почти емкость нашей планеты. Однако сейчас, с появлением суперконденсаторов так больше не говорят, поскольку емкость последних достигает сотни фарад. Тем не менее в большинстве электронных схем используют накопители меньшей C – пикофарады, нанофарады и микрофарады.

Величины емкости конденсатора
Величины емкости конденсатора

Плоский конденсатор и его емкость

Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.

плоский конденсатор
плоский конденсатор
плоский конденсатор

где

d – расстояние между пластинами конденсатора, м

S – площадь самой наименьшей пластины, м2

ε – диэлектрическая проницаемость диэлектрика между обкладками конденсатора

Готовая формула для плоского конденсатора будет выглядеть так:

формула емкости плоского конденсатора
формула емкости плоского конденсатора

где

С – емкость конденсатора, ф

ε – диэлектрическая проницаемость диэлектрика

ε0 – диэлектрическая постоянная, ф/м

S – площадь самой наименьшей пластины, м2

d – расстояние между пластинами, м

Да, знаю, у вас сразу возникает вопрос: “А что такое диэлектрическая постоянная?” Диэлектрическая постоянная – это постоянная величина, которая нужная для вычислений в некоторых формулах электромагнетизма. Ее значение равняется 8, 854 × 10-12 ф/м.

Диэлектрическая проницаемость – эта величина зависит от типа диэлектрика, который находится между обкладками конденсатора. Например, для воздуха и вакуума это значение равняется 1, для некоторых других веществ можете посмотреть в таблице.

диэлектрическая проницаемость веществ
диэлектрическая проницаемость веществ

Какой можно сделать вывод из этой формулы? Хотите сделать конденсатор с огромной емкостью, делайте площадь пластин как можно больше, расстояние между пластинами как можно меньше и заправляйте вместо диэлектрика дистиллированную воду.

В настоящее время конденсаторы делают из нескольких пластин в виде слоеного торта. Это примерно выглядит вот так.

многослойный конденсатор
многослойный конденсатор
многослойный конденсатор

В этом случае формула такого конденсатора примет вид:

формула многослойного конденсатора
формула многослойного конденсатора
формула многослойного конденсатора

где n – это количество пластин

Конденсаторы постоянной емкости

Виды конденсаторов
Виды конденсаторов

Емкость таких конденсаторов не предусмотрено изменять в процессе эксплуатации радиоэлектронной аппаратуры. Они отличаются широчайшим разнообразием и геометрическими размерами – от спичечной головки до огромных шкафов и находят наибольшее применение в печатных платах электронных устройств. Самые распространенные экземпляры показаны на фото.

Конденсаторы переменной емкости КПЕ

Конденсатор переменной емкости
Конденсатор переменной емкости

Для изменения емкости отдельного узла электрической цепи непосредственно в процессе эксплуатации электронного устройства применяют конденсаторы переменной емкости (КПЕ). Главным образом КПЕ использовались в приемниках старого образца для настройки колебательного контура на резонансную частоту радиостанции.

Однако сейчас вместо КПЕ применяют варикапы – полупроводниковые диоды, емкость которых определяется величиной подведенного обратного напряжения. Теперь достаточно изменить напряжение, подаваемое на варикап, чтобы изменить емкость последнего, а  результате и частоту колебательного контура.

Как правило, КПЕ состоит из ряда параллельно расположенных металлических пластин, разделенных воздухом, поэтому габариты их весьма значительны. Варикапы, напротив – имеют гораздо меньшие габариты, потому и заменили КПЕ.

Варикап
Варикап

Расчет емкости конденсатора

Расчет емкости конденсаторов довольно прост. Она определяется тремя параметрами: площадью пластины S, расстоянием между пластинами d и типом диэлектрика ε:

Формула емкости конденсатора
Формула емкости конденсатора

Физический смысл данной формулы следующий: чем больше площадь обкладок, тем больше зарядов на ней может расположиться (накопиться); чем больше расстояние между пластинами и соответственно между зарядами, тем меньшая сила их взаимного притяжения – тем слабее они удерживаются на обкладках, поэтому зарядам легче покинуть обкладки, что приводит к снижению их числа, а следовательно и уменьшению емкости накопителя электрического поля.

Устройство конденсатора
Устройство конденсатора

Диэлектрическая проницаемость ε показывает, во сколько раз заряд конденсатора с данным диэлектриком превосходит заряд аналогичного накопителя, если между его пластинками той же площади и находящихся на таком же расстоянии вакуум. Для воздуха ε равна единице, то есть практически ничем не отличается от вакуума. Сухая бумага обладает диэлектрической проницаемостью в два раза больше воздуха; фарфор – в четыре с половиной раза ε = 4,5. Конденсаторная керамика имеет ε = 10..200 единиц.

Отсюда вытекает важный вывод: чтобы получить максимальную емкость при сохранении прежних геометрических размеров, следует применять диэлектрик с максимальной диэлектрической проницаемостью. Поэтому в широко распространённых плоских конденсаторах используют керамику.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).

Обозначение на схемах
Рис. 9. Обозначение на схемах

Маркировка конденсаторов

По мере развития электроники развивается и элементная база. Поскольку многие страны производят собственные радиоэлектронные элементы, то и маркировка их отличается от маркировки радиоэлектронных элементов других стран.

Поэтому на первых этапах промышленного производства электроники применялось много разнообразных типов маркировки, однако стремление к унификации привело к более-менее ее упорядочению. Это позволило привести и маркировку конденсаторов к общим правилам.

А преимущество здесь очевидное – радиоэлектронному элементу, произведенному в одной стране теперь можно довольно просто подобрать аналог производства другой страны. Идеально было бы свести все типы обозначений и маркировки привести к единому типу, что практически полностью уже выполнено.

Однако до сих пор широкий оборот имеют советские конденсаторы, отличающиеся небольшим, но разнообразием маркировки. В советской маркировке было задействовано все – цифры, буквы и цвета. Причем на корпуса элементов наносились как цифры с буквами, так и цвета, цифры и буквы. Цифры обозначают значение, буквы – единицы измерения.

Маркировка советских конденсаторов
Маркировка советских конденсаторов

Более распространенный тип маркировки состоит из цифр, которые обозначают емкость в пикофарадах, не путать с фарадами! Всегда нужно помнить, что в отличие от резисторов, маркировка которых выполняется в омах, базовой величиной размерности независимо от способа маркировки являются пикофарады (если цифры отделяются запятой, — то микрофарады). В общем, отсчет емкости начинается с пикофарад.

Цифирная маркировка конденсаторов
Цифирная маркировка конденсаторов

Также, ранее применялась исключительно цветовая маркировка – сплошной цвет с цветной точкой. Определить параметры можно только, воспользовавшись справочником.

Цветовая маркировка конденсаторов
Цветовая маркировка конденсаторов

Рассмотренные выше типы маркировки постепенно выходят из обихода, однако о них всегда помнят специалисты, выполняющие ремонт советской аппаратуры, в которой радиоэлементы имеют «старое» обозначение.

Наиболее удачным и совершенным способом обозначения электронных элементов является цифровое кодирование. Цифровое кодирование конденсаторов, как и резисторов, предполагает использование всего трех цифр. Такой подход позволяет реализовать множество комбинаций. Две цифры, расположенные слева обозначают мантису, то есть значащее число, а последняя – третья цифра показывает, сколько нулей нужно прибавить к двум предыдущим цифрам. Например, если на корпусе накопителя указано 153, то емкость его равна 15×103 = 15000 пФ = 15 нФ = 0,015 мкФ.

Маркировка конденсаторов | Цифирное кодирование конденсаторов
Маркировка конденсаторов | Цифирное кодирование конденсаторов

Помимо емкости накопители характеризуются еще рядом основных параметров, которые рассмотрены далее.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип.

Обозначение на схемах
Обозначение на схемах
Обозначение на схемах

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Источники

  • https://electricavdome.ru/chto-takoe-kondensator.html
  • https://odinelectric.ru/equipment/electronic-components/chto-takoe-kondensator-vidy-i-primenenie
  • https://ElectroInfo.net/kondensatory/kondensator-prostymi-slovami-o-slozhnom.html
  • https://www.RadioElementy.ru/articles/chto-takoe-kondensator-dlya-chego-nuzhen/
  • https://poweredhouse.ru/kondensator-ehto/
  • https://oooevna.ru/vidy-elektriceskih-kondensatorov/
  • https://hmelectro.ru/poleznye_statyi/markirovka-kondensatorov-tsifrovaya-tsvetnaya-eyo-rasshifrovka
  • https://www.RusElectronic.com/kondjensatory/
  • https://www.asutpp.ru/chto-takoe-kondensator.html

[свернуть]

Related Posts