Плотность тока — что это такое и в чем измеряется. Выбор мощности, тока и сечения проводов и кабелей — ОРБИТА-СОЮЗ

Единица измерения плотности электротока: вектор и формула вычисления

Содержание

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Работа тока — в чем измеряется

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода). Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Значения плотности тока в технике

Хотя само значение плотности тока от материала проводника не зависит, в технике его выбирают, исходя из его удельного электрического сопротивления и длины провода. Дело в том, что при большой плотности тока проводник с ним нагревается, его сопротивление от этого возрастает, и потери электроэнергии в проводке или обмотке увеличиваются.

Однако, если взять провода слишком толстыми, то и вся проводка получится чрезмерно дорогой. Поэтому расчет бытовой проводки ведут, исходя из так называемой экономической плотности тока, при которой общие долговременные расходы на электросеть минимальны.

Для квартирной проводки, провода в которой не очень длинные, берут значение экономической плотности в пределах 6-15 А/кв. мм. в зависимости от длины проводов. Медный провод диаметром 1,78 мм (2,5 кв. мм) в ПВХ изоляции, замурованный под штукатурку, выдержит и 30, и даже 50 ампер. Но при потребляемой квартирой мощности в 5 кВт плотность ток в нем будет (5000/220) = 23 А, а его плотность в проводке – 9,2 А/кв. мм.

Экономическая плотность тока в линиях электропередач много ниже, в пределах 1-3,4 А/кв. мм. В электрических машинах и трансформаторах промышленной частоты 50/60 Гц – от 1 до 10 А/кв. мм. В последнем случае ее вычисляют, исходя из допустимого нагрева обмоток и величины электрических потерь.

Закон Ома

Плотность энергии магнитного поля

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

j=E* σ,

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Допустимый ток для медных проводов — плотность тока в медном проводнике

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Плотность электрического тока — это… Что такое Плотность электрического тока?

Плотность электрического тока

Плотность тока — векторная величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока по сечению проводника .

В общем случае, где — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу площади .

Направление вектора соответствует направлению вектора скорости , с которой движутся заряды, создающие ток, в предположении, что заряды положительны. В сложных системах (с различными типами носителей заряда, например, в плазме)

Для всех типов подвижных носителей заряда, сумма концентраций частиц данного типа (), домноженных на заряд одной частицы данного типа () и на среднюю скорость частиц этого типа.

Так же плотность тока определяется по формуле
G — проводимость [1/Oм *м]
E — напряженность [В/м]

Общепринятые сечения для проводки в квартире

Как писалось выше, для современных квартир применяется кабель с исключительно медными проводниками. Сечение измеряется в кв. мм, при этом 1 кв. мм соответствует допустимом току 10 А. Таким образом, для розеток обычно применяют кабель на 2,5 кв. мм, для осветительных устройств — 1,5 кв. мм.

Читайте также:  СПОСОБЫ СНИЖЕНИЯ СВАРОЧНЫХ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ

В квартирах допустимо применение кабелей только с медной жилой. Сечение жил измеряется в «квадратах». Один «квадрат» медной жилы проводит до 10 А. Для проводки в доме допустимо брать 2,5 мм2 для розеток и 1,5 мм2 для лампочек.

Сечение и диаметр, отличие
Сечение и диаметр, отличие

Токовая нагрузка на кабель: как рассчитать сечение

Суммарная величина тока, движущегося по проводнику, зависит от нескольких характеристик: длина, ширина, удельное сопротивление и температура. Повышение температуры сопровождается снижением тока. Любая справочная информация, которую вы обнаружите в таблицах ПУЭ, обычно приводится для комнатной температуры 18 градусов Цельсия.

Помимо электрического тока нужно знать материал для проводника и напряжение. Самый простой расчет сечения кабеля по допустимому току: поделить его значение на 10. Если при изучении таблицы вы не обнаружите нужного значения, то ищите ближайшую, чуть большую величину. Такой вариант возможен для медных проводов, а допустимый ток составляет 40 А или меньше.

Допустимые токовые нагрузки на кабель
Допустимые токовые нагрузки на кабель

При расчете токовой нагрузки в сети с постоянным током ориентируются по одножильному кабелю. Напряжение такого тока составляет 12 В. Расчет нагрузки провода, через который подключается лампочка на 0,1 кВт (к примеру, в передней фаре машины), выглядит так:

  • I = P/U = 100/12 ~ 8,35 А.

После этого нетрудно рассчитать сопротивление:

  • R = U/I = 12/8,35 = 1,44 Ом.

В таблице найдите удельное сопротивление меди, из которой производятся жилы современных проводников. Также предположите, что длина кабеля составляет 2 м. Воспользуйтесь формулой, указанной в разделах выше, чтобы получить площадь сечения подходящего провода:

  • S = (ρ*L)/R = (1,68*10-8*2)/1,44 = 1,2 кв. мм.

Выбор сечения кабеля для сетей постоянного тока
Изучая ПУЭ, можно отыскать бессчетное количество таблиц, в которых определена токовая нагрузка для сетей переменного тока с одно- и трехфазными цепями. Поэтому выполнять такие сложные расчеты необязательно.

Таблица токов, в которой можно найти тип бытового прибора, его приблизительные значения мощности, также указывает и интервал возможного потребляемого тока.

Потребляемые мощность и ток электроприборами

Название электроприбора Мощность, кВт Величина тока, А
Стиральная машина 2 – 2,5 9,0 – 11,4
Электроплита 4,5 – 8,5 20,5 – 38,6
Микроволновая печь 0,9 – 1,3 4,1 – 5,9
Холодильник, морозильник 0,2 – 0,8 0,9 – 3,6
Электрочайник 1,8 – 2,0 8,4 – 9,0
Утюг 0,9 – 1,7 4,1 – 7,7
Пылесос 0,7 – 1,4 3,1 – 6,4
Телевизор 0,12 – 0,18 0,6 – 0,8
Осветительные приборы 0,02 – 0,150 0,1 – 0,6

Однофазная схема электроснабжения дома на 220 В
Однофазная схема электроснабжения дома на 220 В

Если под рукой нет таблицы, но известен потребляемый ток, то вычислить сечение можно в два этапа, используя формулы:

  1. Находят сопротивление материала при данном значении тока. Это можно сделать из формулы Закона Ома I = U/R. Выразив отсюда R, получают R = U/I.
  2. Вычисляют площадь сечения, используя значение удельного сопротивления для конкретного материала. Применяют формулу:

R = (ρ*L)/S,

  • ρ – удельное сопротивление;
  • L – длина проводника;
  • S – площадь сечения.

S = (ρ*L)/R.

Удельное сопротивление для меди ρ = 1,68*10-8 Ом*м, для алюминия – 2,82*10-8 Ом*м.

I = P/U = 50/12 = 4,15 А.

R = U/I = 12/4,15 = 2,9 Ом.

Зная удельное сопротивление меди и, приняв за максимальную длину провода L = 2 м, подставляют всё известное в формулу.

S = (ρ*L)/R = (1,68*10-8*2)/2,9 = 1,9 мм2.

В ПУЭ есть множество таблиц, по которым можно определить токовую нагрузку однофазных и трёхфазных цепей переменного тока. Не обязательно производить математические вычисления. Достаточно оперировать известными параметрами и правильно определить сечение провода или кабеля.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

j= I/ΔS.

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

Наличие магнитного поля вокруг проводника или катушки с током

При подключении соленоида (катушки) в электрическую цепь вокруг нее формируется поле. Характеристики поля зависят от ряда параметров: от средовых особенностей окружения, токовой силы (она измеряется в амперах) и материала, из которого изготовлен проводник или обмотка катушки. В полевом пространстве могут образовываться электромагнитные волны. Так как на полевой энергетический потенциал, прежде всего, оказывает влияние сила текущего в системе электротока, можно сделать вывод, что работа тока по генерированию магнитного пространства будет эквивалентной энергии последнего. Если в систему подключена катушка с магнитным сердечником, то на энергетическую плотность будет влиять полевая энергия в вакууме и в материале, из которого сделан сердечниковый элемент.

Выбор проводов по экономической плотности тока. что такое плотность тока
Плотность тока проводимости, смещения, насыщения: определение и формулы
Электрическая мощность
Выбор проводов по экономической плотности тока. что такое плотность тока
Плотность тока — википедия. что такое плотность тока
Плотность тока
Плотность электрического тока
Плотность энергии магнитного поля
Электрический ток: формула формула мощности электрического тока
Выбор проводов по экономической плотности тока. что такое плотность тока


Подключение индуктивной катушки к источнику тока

Для изучения динамики явления можно рассмотреть электроцепь, включающую в себя дроссель, лампу, замыкающий ключ и источник постоянного электротока. Когда ключик замыкается, токовый путь будет идти от «положительного» зажима источника через лампу и индуктивную катушку. Поначалу лампа накаливания загорится ярче, что связано со значительной величиной сопротивления дроссели. По мере того, как сопротивление будет падать, а проходящий через обмотку ток увеличиваться, интенсивность горения лампочки будет понижаться. Связано это с тем, что первое время подаваемый на дроссель ток имеет значение, пропорциональное току высокой частоты.

Чтобы практически построить цепь, подходящую для расчета, нужно, чтобы энергетический ресурс источника питания затрачивался на генерирование магнитного поля. Поэтому параметрами внутреннего сопротивления дроссели и питательного источника допустимо пренебрегать.

Важно! Согласно второму закону Кирхгофа, сумма подсоединенных к электрической цепи напряжений равняется сумме снижений напряжения для всех компонентов цепочки. Второй закон Кирхгофа


Второй закон Кирхгофа

Что такое плотность тока допустимая плотность тока для меди. Естественные науки

Плотность постоянного электрического тока можно сравнить с плотностью газа, текущего в трубе под давлением. Плотность тока равна отношению силы тока в амперах (А) к площади поперечного сечения проводника в квадратных миллиметрах (Поз. 1 на рисунке). От материала проводника ее значение не зависит. Сечение проводника берется по нормали (перпендикулярно) к его продольной оси.

Если, допустим, провод имеет диаметр D = 1 мм, то площадь его поперечного сечения будет S = 1/4(πD^2) = 3,1415/4 = 0,785 кв. мм. Если по такому проводу течет ток I в 5 А, то его плотность j будет равна j = I/S = 5/0,785 = 6,37 А/кв. мм.

Хотя само значение плотности тока от материала проводника не зависит, в технике его выбирают, исходя из его удельного электрического сопротивления и длины провода. Дело в том, что при большой плотности тока проводник с ним нагревается, его сопротивление от этого возрастает, и потери электроэнергии в проводке или обмотке увеличиваются.

Однако, если взять провода слишком толстыми, то и вся проводка получится чрезмерно дорогой. Поэтому расчет бытовой проводки ведут, исходя из так называемой экономической плотности тока, при которой общие долговременные расходы на электросеть минимальны.

Для квартирной проводки, провода в которой не очень длинные, берут значение экономической плотности в пределах 6-15 А/кв. мм. в зависимости от длины проводов. Медный провод диаметром 1,78 мм (2,5 кв. мм) в ПВХ изоляции, замурованный под штукатурку, выдержит и 30, и даже 50 ампер. Но при потребляемой квартирой мощности в 5 кВт плотность ток в нем будет (5000/220) = 23 А, а его плотность в проводке – 9,2 А/кв. мм.

Экономическая плотность тока в линиях электропередач много ниже, в пределах 1-3,4 А/кв. мм. В электрических машинах и трансформаторах промышленной частоты 50/60 Гц – от 1 до 10 А/кв. мм. В последнем случае ее вычисляют, исходя из допустимого нагрева обмоток и величины электрических потерь.

Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.

Мне нравитсяНе нравится

Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.

Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.

Будет интересно➡  Что такое статическое электричество и как от него избавиться

Ток смещения довольно сложное понятие электродинамики, но именно благодаря ему переменный ток проходит через конденсатор, и антенна излучает сигнал в эфир. Ток смещения тоже имеет свою плотность, но определить ее не так-то просто.

Что такое плотность тока?
Даже в очень хорошем конденсаторе электрическое поле слегка «выпирает» в стороны между пластинами (Поз. 3 на рисунке), поэтому к пересекаемой током смещения поверхности нужно давать некоторую добавку. Для конденсатора ее величиной еще можно пренебречь, но если речь об антенне, то там эта виртуальная, пересекаемая током смещения поверхность значит все.

Чтобы найти плотность тока смещения, приходится решать сложные уравнения электродинамики или производить компьютерное моделирование процесса. К счастью, для многих случаев инженерной практики знать ее величину не требуется.

Про алюминиевый провод.

В отличие от меди, алюминий хуже пропускает электрический ток. Для алюминия (провод такого же сечения, что и медный), при токах до 32 А, максимальный ток будет меньше, чем для меди на 20 %. При токах до 80 А алюминий пропускает хуже ток на 30%.

Максимальный ток алюминиевого провода равен площади сечения, умножить на 6.

Имея знания, полученные в данной статье, можно выбрать провод по соотношениям «цена/толщина», «толщина/рабочая температура», а также «толщина/максимальный ток и мощность».

Основные моменты про площадь сечения проводов освещены, если же что-то не понятно, либо есть, что добавить – пишите и спрашивайте в комментариях. Подписывайтесь в блоге СамЭлектрик, для получения новых статей.

К максимально току в зависимости от площади сечения провода, немцы относятся несколько иначе. Рекомендация по выбору автоматического (защитного) выключателя, расположена в правом столбце.

Таблица зависимости электрического тока защитного автомата (предохранителя) от сечения. Таблица 3.

Данная таблица взята из «стратегического» промышленного оборудования, возможно поэтому может создаться впечатление, что немцы перестраховываются.

Преимущественное использование легкого металла характерно для зданий постройки 60-х – 70-х годов двадцатого века. Основным критерием выбора серебристого металла называют доступность.

Еще алюминий не случайно называют крылатым металлом. О его небольшой удельной массе известно всем. Но не только это определяет долголетие в использовании этого элемента в электротехнике.

Достоинства

Небольшой вес алюминия используется при прокладке высоковольтных линий. В сравнительном аспекте принята пропорция, когда алюминий на 60 % легче, чем медная токопроводящая шина.Среди прочих достоинств выделяются:

  1. Невысокая стоимость. Цена играет роль, если учесть протяженность проводки в доме. Только для среднего коттеджа потребуется несколько километров кабеля.
  2. Химическая стойкость к окислению. Эта особенность актуальна с учетом закрытия стержня пластиковой оплеткой.
  3. Стойкость открытых участков алюминия. На поверхности металла образована защитная пленка, предохраняющая металл от внешних воздействий.

Незаменим Al и при изготовлении контактов в осветительных установках. Здесь металл вытеснил применявшуюся латунь.

Недостатки

Повсеместное использование алюминия не произошло по причине весомых недостатков, присущих металлу:

  1. Высокое удельное сопротивление и вытекающая склонность к нагреву. С учетом этого свойства не допускается применять провод сечением менее 16 мм2.

Показатель Al – 0,0271 Ом×мм2/м против аналогичной характеристики у Cu – 0,0175 Ом×мм2/м.

  1. Подверженность ослаблению металла в местах контакта при сильной нагрузке. Это связано с периодическим нагревом и последующим остыванием места крепления.
  2. Проблематичность соединения участков алюминиевого кабеля. Препятствием — защитная пленка на поверхности.
  3. Хрупкость. Даже без периодического нагрева склонна к переломам, в местах изгиба. Ресурс ограничен 25-30 годами.

Предлагаем ознакомиться Толщина стен из пеноблоков: для дома, для наружных стен

«Крылатый» металл не оптимальный вариант при прокладке локальных сетей. Его потенциал – передача электроэнергии на большие расстояния.

Тепловой нагрев

Проведение укладки медной проводки вместо алюминиевого кабеля не стоит устраивать как «замену ради замены». Занятие это не простое и финансово затратное. Плановая укладка нового провода выполняется в ряде ситуаций:

  • при повреждении провода;
  • при повреждении изоляции из-за старения;
  • после пожара, вызванного неисправностью элекрооборудования, к примеру, из-за короткого замыкания.

Использование меди поможет в дальнейшем снизить риск возникновения аварийных ситуаций. Следует только изучить схему разветвления и подобрать провод нужного сечения. Работа проводится под надзором электрика.

У медной шина ощутимые преимущества при использовании в условиях энергоснабжения индивидуального жилья. Единственным непреодолимым препятствием станет стоимость, в 3-4 раза превышающая цену аналогичного изделия из алюминия.

В квартирах допустимо применение кабелей только с медной жилой. Сечение жил измеряется в «квадратах». Один «квадрат» медной жилы проводит до 10 А. Для проводки в доме допустимо брать 2,5 мм2 для розеток и 1,5 мм2 для лампочек.

Сечение и диаметр, отличие

4.1. Сила тока и плотность тока в проводнике

В проводниках часть валентных электронов не связана с определенными атомами и может свободно перемещаться по всему его объему. В отсутствие приложенного к проводнику электрического поля такие свободные электроны — электроны проводимости — движутся хаотично, часто сталкиваясь с ионами и атомами, и изменяя при этом энергию и направление своего движения. Через любое сечение проводника в одну сторону проходит столько же электронов, сколько и в противоположную. Поэтому результирующего переноса электронов через такое сечение нет, и электрический ток равен нулю. Если же к концам проводника приложить разность потенциалов, то под действием сил электрического поля свободные заряды в проводнике начнут двигаться из области большего потенциала в область меньшего — возникнет электрический ток. Исторически сложилось так, что за направление тока принимают направление движение положительных зарядов, которое соответствует их переходу от большего потенциала к меньшему.

Электрический ток характеризуется силой токаI (рис. 4.1).

Сила тока есть скалярная величина, численно равная заряду переносимому через поперечное сечение проводника в единицу времени



Рис. 4.1. Сила тока в проводнике

Согласно (4.1), сила тока в проводнике равна отношению заряда , прошедшего через поперечное сечение проводника за время к этому времени.

Читайте также:  Расшифровка формулы работы электрического тока

Замечание: В общем случае сила тока через некоторую поверхность равна потоку заряда через эту поверхность.

Если сила тока с течением времени не изменяется, то есть за любые равные промежутки времени через любое сечение проводника проходят одинаковые заряды, то такой ток называется постоянным, и тогда заряд, протекший за время t, может быть найден как (рис. 4.2)



Рис. 4.2. Постоянный ток, протекающий через разные сечения проводника

Величина

, численно равная заряду, проходящему через единицу площади поперечного сечения проводника за единицу времени, называется плотностью тока.

С учетом определения силы тока плотность тока через данное сечение может быть выражена через силу тока , протекающего через это сечение


При равномерном распределении потока зарядов по всей площади сечения проводника плотность тока равна


В СИ единицей измерения силы тока является ампер (А). В СИ эта единица измерения является основной.

Уравнение (4.1) связывает единицы измерения силы тока и заряда

В СИ единицей измерения плотности тока является ампер на квадратный метр (А/м 2 ):


Это очень малая величина, поэтому на практике обычно имеют дело с более крупными единицами, например

Плотность тока можно выразить через объемную плотность зарядов и скорость их движения v (рис. 4.3).


Рис. 4.3. К связи плотности тока j с объемной плотностью зарядов и дрейфовой скоростью v носителей заряда. За время dt через площадку S пройдут все заряды из объема dV = vdt S

Полный заряд, проходящий за время dt через некоторую поверхность S, перпендикулярную вектору скорости v, равен

Так как dq/(Sdt) есть модуль плотности тока j, можно записать

Поскольку скорость v есть векторная величина, то и плотность тока также удобно считать векторной величиной, следовательно


Здесь плотность заряда, скорость направленного движения носителей заряда.

Замечание: Для общности использован индекс , так как носителями заряда, способными участвовать в создании тока проводимости, могут быть не только электроны, но, например, протоны в пучке, полученном из ускорителя или многозарядные ионы в плазме, или так называемые «дырки» в полупроводниках «р» типа, короче, любые заряженные частицы, способные перемещаться под воздействием внешних силовых полей.

Кроме того, удобно выразить плотность заряда через число носителей заряда в единице объема — (концентрацию носителей заряда) . В итоге получаем:


Следует подчеркнуть, что плотность тока, в отличие от силы тока — дифференциальная векторная величина. Зная плотность тока, мы знаем распределение течения заряда по проводнику. Силу тока всегда можно вычислить по его плотности. Соотношение (4.4) может быть «обращено»: если взять бесконечно малый элемент площади , то сила тока через него определится как . Соответственно, силу тока через любую поверхность S можно найти интегрированием

Что же понимать под скоростью заряда v, если таких зарядов — множество, и они заведомо не движутся все одинаково? В отсутствие внешнего электрического поля, скорости теплового движения носителей тока распределены хаотично, подчиняясь общим закономерностям статистической физики. Среднее статистическое значение ввиду изотропии распределения по направлениям теплового движения. При наложении поля возникает некоторая дрейфовая скорость — средняя скорость направленного движения носителей заряда:

которая будет отлична от нуля. Проведем аналогию. Когда вода вырывается из шланга, и мы интересуемся, какое ее количество поступает в единицу времени на клумбу, нам надо знать скорость струи и поперечное сечение шланга. И нас совершенно не волнуют скорости отдельных молекул, хотя они и очень велики, намного больше скорости струи воды, как мы убедились в предыдущей части курса.

Таким образом, скорость в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)


Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9)

Коэффициент пропорциональности

называется проводимостью вещества проводника.

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).


Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм 2 = 10 –6 м 2 . Тогда плотность тока равна j = 10 6 А/м 2 . Теперь воспользуемся соотношением (4.7)

Читайте также:  Папа токи токийский гуль

Носителями зарядов в меди являются электроны (е = 1.6·10 -19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — rCu=8,9·10 3 кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10 –3 кг/моль. Отношение

— это число молей в 1 м 3 . Умножая на число Авогадро Na = 6,02·10 23 моль –1 , получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 10 6 м/с, то есть на одиннадцать порядков величины больше.

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме


Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

Источник

Причины нагрева кабеля

Токоведущие жилы могут перегреваться по нескольким причинам, которые напрямую связаны с природой электрического тока. Электрическое поле приводит в движение электроны, которые перемещаются по выбранному проводнику. В кристаллических решетках, из которых состоят металлы, действуют сильные молекулярные связи.

Предлагаем ознакомиться Как обложить железную печь кирпичом на даче

Представьте шарик для настольного тенниса и паутину. Вторая — более-менее прочна, первый — обладает малым весом, поэтому для того, чтобы шарик разорвал паутину, придется приложить больше усилий. Чем сильнее вы выполните замах, тем более напряженными будут ваши мышцы. Чем больше напряжение, тем выше затрачиваемая энергия. Соответственно и мышцы будут нагреваться сильнее.

Так и электроны вынуждены высвобождать больше тепла, затрачивая немало энергии на преодоление этих молекулярных связей. Такой процесс называется преобразованием электрической энергии в тепловую.

Сравнить такое явление можно с выделением тепла при трении. Можно сказать, что электроны вынуждены тереться о кристаллическую решетку металла и тем самым выделять тепло. Данное свойство металлического кабеля имеет свои преимущества и недостатки. Нагрев может быть полезен на производственных объектах и для бытовых приборов.

Он является основным свойством, позволяющим работать электрическим печам, обогревателям, утюгам и чайникам. Однако в обычных электрических сетях это может привести к перегреву и разрушению изоляции, а впоследствии — и вовсе к возгоранию. Могут испортиться техника и оборудование. Происходит подобное в случае превышения заданной нормы для длительных токовых нагрузок.

Перечислим три основные причины перегрева проводника:

  1. Наиболее распространенная — использование кабеля с некорректным сечением. Любой проводник имеет уникальную максимально допустимую пропускную способность по току. Измеряется она в Амперах. Перед подключением бытового прибора нужно определить его мощность и в соответствии с ней подобрать правильное сечение. Важно учесть запас на 30-40%.
  2. Вторая причина — отсутствие качественного контакта в точках соединения линии. Речь идет об участках трассы, где кабель подключается к щитку, автомату или выключателю. Плохой контакт приводит к нагреву. При худших раскладах — полному перегоранию. В большинстве случаев будет достаточно осмотреть контакты и подтянуть все соединения.
  3. Старая электропроводка строилась на алюминиевых жилах, поэтому при модернизации таких кабельных линий зачастую возникает необходимость перехода на медные проводники. В данном случае важно соблюдать технику подключения медных и алюминиевых жил. Без применения специальных клеммников появление окисления — вопрос времени.

Старая алюминиевая проводка в квартире
Старая алюминиевая проводка в квартире

Плотность тока проводимости, смещения, насыщения: определение и формулы

В данной статье мы рассмотрим плотность тока и формулы для нахождения различных видов плотности тока: проводимости, смещения, насыщения.

Плотность тока – это векторная физическая величина, характеризующая насколько плотно друг к другу располагаются электрические заряды.

Объемная плотность магнитной энергии

Формула нахождения объемной плотности энергии имеет такой вид:

ω=W/V.

Под ω здесь подразумевается собственно искомая плотность, под W – энергия имеющегося поля, под V – объем пространства, в котором поле проявляет активность. Если выразить значение W через магнитную проницаемость µ и индукцию В и подставить в формулу, она приобретет следующий вид:

ω=В2/2* µ0* µ (здесь µ0 – это магнитная постоянная).

Преобразование с использованием вектора индукции применяется, чтобы исключить привязку активного магнитного поля к особенностям дросселя. Формула для вычисления индукционной характеристики выглядит так:

B= µ0* µ*I*n.

I здесь – токовая сила в катушечной цепочке, через n выражается такая величина, как плотность обмотки. Она равна частному количества витков в соленоидной обмотке и длины фрагмента, на котором размещены витки. Тогда формула для W

W= В2*V/2* µ0* µ.

Подставив выражение в основную формулу плотности, можно привести его к ранее обозначенному виду.

1.3.27

Увеличение количества линий или цепей сверх
необходимого по условиям надежности электроснабжения в целях удовлетворения
экономической плотности тока производится на основе технико-экономического
расчета. При этом во избежание увеличения количество линий или цепей
допускается двукратное превышение нормированных значений, приведенных в табл.
1.3.36.

Таблица 1.3.36. Экономическая плотность тока

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.

Плотность электрического тока википедия
Электрическая мощность — википедия с видео // wiki 2
Определение мощности электрического тока: обозначение и единицы измерения
Магнитное поле проводника: определение плотности энергии
Выбор проводов по экономической плотности тока. что такое плотность тока
Плотность тока — википедия. что такое плотность тока
Электрический ток. сила и плотность тока
Плотность тока проводимости, смещения, насыщения: определение и формулы
Единица измерения плотности электротока: вектор и формула вычисления
Электрическая мощность

Данными указаниями следует руководствоваться также при
замене существующих проводов проводами большего сечения или при прокладке
дополнительных линий для обеспечения экономической плотности тока при росте
нагрузки. В этих случаях должна учитываться также полная стоимость всех работ
по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и
материалов.

О плотности тока высокой частоты

Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.

Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.

Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями. Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда. Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Источники

  • https://amperof.ru/teoriya/plotnost-toka-chto-eto-takoe-i-v-chem-izmeryaetsya.html
  • https://oxotnadzor.ru/plotnost-toka-perevod-yedinits/
  • https://ElectroInfo.net/teorija/plotnost-toka.html
  • https://PromkomRostov.ru/materialy/plotnost-mednogo-provodnika-2.html
  • https://uk-parkovaya.ru/whatandwhy/theory/edinica-izmerenia-plotnosti-elektrotoka-formula-vycislenia.html

[свернуть]

Related Posts