Направление линий магнитной индукции определяется по правилу буравчика (правой руки) - Все об электрике

Направление линий магнитной индукции определяется по правилу буравчика (правой руки)

Содержание

Магнитное поле

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов

.

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем

.

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами
(северный и южный)
. Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Читайте также:  Контакторы и реле — разновидности и применение

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B

. Магнитное поле графически изображают при помощи силовых линий (
линии магнитной индукции
). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.








Немного из истории магнетизма

Исследование явления магнетизма началось много веков назад, когда еще в VI в. до н.э. в древнем Китае были обнаружен камни (горная порода), которые притягивали к себе железные предметы. В 1269 г. французский исследователь Петр Перегрин разместил на поверхности постоянного сферического магнита маленькие стальные иголки и увидел, что они расположились не хаотично, а по определенным линиям, которые пересекались в двух точках, названных “полюсами” по аналогии с географическими полюсами Земли. Можно сказать, что это была первая “визуализация” магнитных линий.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Читайте также:  Сколько времени длится пуск стартера автомобиля если при силе тока в 200

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Магнитное поле проводника с током

А теперь о том, что обнаружили Ханс Кристиан Эрстед

и
Андре Мари Ампер
в 1820 г. Оказывается, магнитное поле существует не только вокруг магнита, но и любого проводника с током. Любой провод, например, шнур от лампы, по которому протекает электрический ток, является магнитом! Провод с током взаимодействует с магнитом (попробуйте поднести к нему компас), два провода с током взаимодействуют друг с другом.

Силовые линии магнитного поля прямого тока — это окружности вокруг проводника.


Закон Био-Савара-Лапласа







Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).

Иллюстрация правила правой руки

Рис. 2. Иллюстрация правила правой руки

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

Читайте также:  Единицы измерения величин для школьников

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

Определение направления вектора магнитной индукции с помощью правила буравчика

В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.

Читайте также:  Что такое RFID метки или метки радиочастотной идентификации?

Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:

  • Магнитной индукции;
  • Величины и направления индукционного тока;
  • Угловой скорости.

Такое понимание было сформулировано в правиле буравчика.

Совместив поступательное движение правостороннего буравчика с направлением тока в проводнике получаем направление линий магнитного поля, на которое указывает вращение рукоятки.

Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.

Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.

Тест по теме

  1. Вопрос 1 из 5

Магнитное поле проявляет себя, действуя на …

  • покоящиеся электрические заряды
  • электрическое поле
  • проводник с током
  • гравитационное поле

Начать тест(новая вкладка)Доска почётаЧтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

Средняя оценка: 4.5. Всего получено оценок: 165.

А какая ваша оценка?

Новые тестыБудь в числе первых на доске почета

  • Все
  • Литература
  • Русский язык
  • Чтение
  • География
  • Окружающий мир
  • Физика
  • Английский язык
  • Биология
  • Геометрия
  • Алгебра
  • Математика
  • Обществознание
  • Химия
  • Информатика
  • История России
  • История
  • Тест на тему Татьяна Ларина
  • Тест на тему Татьяна Ларина
  • Тест на тему Пугачёв
  • Тест на тему Ольга Ларина
  • Тест на тему Гринёв
  • Тест на тему Швабрин
  • Тест на тему Маша Миронова
  • Тест на тему Как пишется «недаром»?
  • Тест на тему Как пишется «недаром»?
  • Тест на тему Как пишется «подписанный»?
  • Тест на тему Как пишется «довольно-таки» или «довольно таки»?
  • Тест на тему Как пишется «получится»?
  • Тест на тему Как пишется «впрочем»?
  • Тест на тему Как пишется «неоднократно»?
  • Тест по произведению Житие Сергия Радонежского
  • Тест по произведению Житие Сергия Радонежского
  • Тест по произведению Серая шейка
  • Тест по произведению Каша из топора
  • Тест по произведению Морозко
  • Тест по произведению Лягушка-путешественница
  • Тест по произведению Сивка-Бурка
  • Тест по биографии Фрэнсиса Дрейка
  • Тест по биографии Фрэнсиса Дрейка
  • Тест по биографии Баренца
  • Тест по биографии Тура Хейердала
  • Тест по биографии Чирикова
  • Тест на тему Виды вулканов
  • Тест на тему Реки Сибири
  • Тест на тему Достопримечательности Санкт-Петербурга
  • Тест на тему Достопримечательности Санкт-Петербурга
  • Тест на тему Государственные символы России
  • Тест на тему Великобритания
  • Тест на тему Рыцари и замки
  • Тест на тему Средние века
  • Тест на тему Примеры физических явлений
  • Тест на тему Примеры физических явлений
  • Тест на тему Удивительные свойства воды
  • Тест на тему Давление идеального газа
  • Тест на тему Средняя скорость движения
  • Тест на тему Прямолинейное равноускоренное движение
  • Тест на тему Механика
  • Тест на тему Past Continuous - правила и примеры
  • Тест на тему Past Continuous - правила и примеры
  • Тест на тему Превосходная степень прилагательных в английском языке
  • Тест на тему Past Perfect Passive Voice (Пассивный залог)
  • Тест на тему Past Perfect Tense
  • Тест на тему Разница между Past simple и Past Perfect
  • Тест на тему Present Simple - правила и примеры в английском языке
  • Тест на тему Строение речного рака - внешнее и внутреннее
  • Тест на тему Строение речного рака - внешнее и внутреннее
  • Тест на тему Признаки типа Членистоногих
  • Тест на тему Многообразие членистоногих
  • Тест на тему Строение паукообразных
  • Тест на тему Класс Паукообразные
  • Тест на тему Представители паукообразных
  • Тест на тему Окружность
  • Тест на тему Окружность
  • Тест на тему Зеркальная симметрия относительно плоскости
  • Тест на тему Центральный угол
  • Тест на тему Вычитание векторов
  • Тест на тему Сложение и вычитание векторов
  • Тест на тему Отношение площадей подобных треугольников
  • Тест по биографии Рене Декарта
  • Тест по биографии Рене Декарта
  • Тест на тему Деление многочлена на многочлен
  • Тест на тему Деление многочлена на многочлен столбиком
  • Тест на тему Линейные уравнения
  • Тест на тему Действительные числа
  • Тест на тему Иррациональные числа
  • Тест на тему Деление с остатком
  • Тест на тему Деление с остатком
  • Тест по биографии Пифагора
  • Тест по биографии Лобачевского
  • Тест на тему Численный масштаб
  • Тест на тему Сравнение чисел
  • Тест на тему Уравнение равномерного движения
  • Тест на тему Уравнение равномерного движения
  • Тест на тему Налоговое право
  • Тест на тему Пропорциональная избирательная система
  • Тест на тему Мажоритарная избирательная система
  • Тест на тему Избирательная система
  • Тест на тему Политическое поведение
  • Тест по биографии Бутлерова
  • Тест по биографии Бутлерова
  • Тест на тему Изомерия алкенов
  • Тест на тему Цис-транс-изомерия
  • Тест на тему Константа гидролиза
  • Тест на тему Получение фенола
  • Тест на тему Гомологи бензола
  • Тест по биографии Ады Лавлейс
  • Тест по биографии Ады Лавлейс
  • Тест на тему История развития ЭВМ
  • Тест на тему Шестнадцатиричная система счисления
  • Тест на тему Непозиционная система счисления
  • Тест на тему Десятичная система счисления
  • Тест на тему Процессы информационной культуры
  • Тест на тему Первые декреты советской власти
  • Тест на тему Первые декреты советской власти
  • Тест на тему Введение всеобщей трудовой повинности
  • Тест на тему Первый поход Батыя на Русь
  • Тест на тему Восстание в Твери против баскака Чолхана
  • Тест на тему Крепостничество
  • Тест на тему Юрий и Иван Даниловичи
  • Тест Культура Древнего Востока
  • Тест Культура Древнего Востока
  • Тест на тему Древние цивилизации (10 класс)
  • Тест на тему Революция 1917 года
  • Тест на тему Культура России 18 века (7 класс)
  • Тест Экономическое развитие России по истории
  • Тест на тему Октябрьская революция (9 класс)

Все тесты Последние результаты
Гость завершил Тест «Смерть чиновника» с результатом 7/81 секунда назад
Гость завершил Тест по произведению «Илиада» Гомер с результатом 5/101 секунда назад
Гость завершил Тест «Выстрел» с результатом 12/135 секунд назад
Гость завершил Тест «Горе от ума» с результатом 12/155 секунд назад
Гость завершил Тест «Гамлет» с результатом 10/157 секунд назад
Гость завершил Тест на тему «Модальный глагол must» с результатом 5/513 секунд назад
Гость завершил Тест «Муму» с результатом 9/1417 секунд назад
Гость завершил Тест по произведению «Дикие лебеди» Андерсен с результатом 6/1020 секунд назад
Гость завершил Тест «Медный всадник» с результатом 8/1122 секунды назад
Гость завершил Тест по произведению «Песня про купца Калашникова» Лермонтов с результатом 9/1023 секунды назад
Гость завершил Тест по произведению «Пляшущие человечки» Дойль с результатом 7/1024 секунды назад
Гость завершил Тест по произведению «Дом, где разбиваются сердца» Шоу с результатом 8/1028 секунд назад
Гость завершил Тест «Преступление и наказание» с результатом 7/1630 секунд назад
Гость завершил Тест «Бедная Лиза» с результатом 11/1132 секунды назад
Гость завершил Тест «Толстый и тонкий» с результатом 7/833 секунды назад
Гость завершил Тест «Собачье сердце» с результатом 7/1534 секунды назад
Гость завершил Тест по произведению «Путешествие из Петербурга в Москву» Радищев с результатом 10/1036 секунд назад
Гость завершил Тест «Герой нашего времени» с результатом 6/1641 секунда назад
Гость завершил Тест по произведению «Уроки французского» с результатом 7/1147 секунд назад
Гость завершил Тест на знание Пушкина с результатом 5/1048 секунд назад

Не понравилось? — Напиши в комментариях, чего не хватает.

Правило буравчика простым языком

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика

или правилу
правой руки
.

Графическое обозначение линий МИ
Определение направления B→
Электрическая модель для определения модуля B→

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Читайте также:  Управление трёхэтажным подъёмником (лифтом) с помощью PIC16F873

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Модуль вектора магнитной индукции

Закон электромагнитной индукции — формула

Чтобы определить величину вектора МИ, нужно узнать его модуль. Как определяется модуль вектора магнитной индукции (градиент)? Это можно понять на примере небольшой модели. Если поместить в поле подковообразного магнита горизонтально подвешенный проводник, то МП магнита будет действовать только на участок, расположенный в междуполюсном промежутке. Сила F→, действующая на этот участок, будет направлена под прямым углом к линиям индукции и самому проводнику. Она достигает своего максимума, когда орт МИ располагается перпендикулярно проводнику.

Значение модуля B→ будет равно отношению максимального значения этой силы F→ к произведению длины отрезка ∆L на силу движения зарядов (I), а именно:

B = Fm/I*∆L.

Электрическая модель для определения модуля B→

Вектор магнитной индукции

Это векторная величина, характеризующая силовое действие поля.

Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:

Индукция магнитного поля в центре тонкого кругового витка радиуса r:

Индукция магнитного поля соленоида

(катушка, витки которой последовательно обходятся током в одном направлении):

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

закон Фарадея для контура

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Закон Ома

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

ЭДС индукции

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Напряженность магнитного поля

Определение

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.

→H=→Bμμ0..

μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H↑↑→B.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Правило буравчика для прямого проводника
Правило буравчика для прямого проводника

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Линии магнитной индукции

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали.

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Определение направления B→

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Графическое обозначение линий МИ

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Формула ЭДС индукции

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB:

dB = µ0 *I*dl*sin α /4*π*r2,

где:

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме.

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

В = µ* µ0*2*I/4*π*r.

Для кругового движения она выглядит так:

В = µ*µ0*I/4*π*r.

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

B→= B1→+ B2→+ B3→… + Bn→

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В  СГС магнитный поток измеряется в максвеллах (Мкс):

108 Мкс = 1 Вб.

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

φ = |B*S| = B*S*cosα,

где:

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900).

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Физический смысл магнитной индукции (МИ)

Возможность действовать на предмет магнитным полем (МП) определяет сущность настоящей индукции. Она появляется в момент перемещения в катушке индуктивности магнита постоянной природы. Результатом такого движения является появление тока, с одновременным увеличением магнитного потока. Поскольку обмотка у катушки металлическая, а структура металла – кристаллическая решётка, то можно объяснить физические свойства этого явления.

Электроны, находящиеся в этой решётке, при отсутствии магнитного воздействия находятся в покое. Движения никакого нет. Оно начинается в тот момент, когда электроны попадают под воздействие переменного МП (поле изменяется при перемещении постоянного магнита).

Значение возникающего в катушке тока зависит от диаметра жилы и количества витков, физических характеристик магнита и скорости его движения.

Единица размерности в системе Си рассматриваемой характеристики – тесла. Она обозначается буквами Тл.

Важно! Электроны в решётке, после попадания катушки в МП, разворачиваются под некоторым углом и выстраиваются вдоль силовых линий МП. Количество ориентированных частиц и однородность их размещения зависимы от величины поля.

Вектор – это вектор индукции магнитного поля (градиентный параметр МП).

Вектор магнитной индукции

Направление линий магнитной индукции внутри постоянного магнита

Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.

Читайте также:  Как научиться читать электрические схемы?

Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт.  В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт. Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.

Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован.  Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.

Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним. Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения. Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения

. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Читайте также:  Стабилизаторы тока. Виды и устройство. Работа и применение

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле электромагнита (соленоида)

Определение

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

N=ld..

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B=μμ0INl..=μμ0Id..

Модуль напряженности магнитного поля в центральной части соленоида:

H=INl..=Id..

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Вид сверху:

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B=μμ0I2πr..

Модуль напряженности:

H=I2πr.

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

B=μμ0I2R..

Модуль напряженности в центре витка:

H=I2R..

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Что мы узнали?

Магнитная индукция – это векторная величина. Ее модуль равен отношению максимальной силы, действующей со стороны поля на проводник с единичным током единичной длины, а для определения направления вектора используются мнемонические правила буравчика и обхвата правой рукой.

Правило левой руки

В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Сила Ампера
Сила Ампера
Рис. 4. Сила Ампера

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Интерпретация правил левой руки
Интерпретация правил левой руки

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Источники

  • https://LesSale.ru/nuzhno-znat/kak-opredelit-napravlenie-linij-magnitnoj-indukcii.html
  • https://oxotnadzor.ru/kak-opredelit-napravleniye-vektora-magnitnoy-induktsii-pryamoy-tok/
  • https://odinelectric.ru/knowledgebase/pravilo-buravchika-i-pravilo-pravoj-ruki
  • https://obrazovaka.ru/fizika/napravlenie-vektora-indukcii-magnitnogo-polya.html
  • https://amperof.ru/teoriya/vektor-magnitnoj-indukcii-formula.html
  • https://skysmart.ru/articles/physics/zakon-elektromagnitnoj-indukcii
  • https://Spadilo.ru/magnitnoe-pole-i-ego-xarakteristiki/

[свернуть]

Related Posts