Правила и алгоритм расчета заземляющих устройств. Примеры расчёта заземляющего устройства

Расчет заземления: правила, особенности и формулы

Содержание

Естественное заземление

Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:

  • неизолированные металлические трубы;
  • обсадка водяных скважин;
  • элементы металлических заборов, уличные фонари;
  • оплетка кабельных сетей;
  • стальные элементы фундаментов, колонн.

Использование обсадной скважины в качестве естественного заземлителя
Использование обсадной скважины в качестве естественного заземлителя

Лучший вариант естественного заземления — водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.

Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:

  • имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
  • при строительстве фундамента арматура на двух или более участках была выведена наружу;
  • металлические элементы имеют сварные соединения;
  • сопротивление арматуры соответствует регламенту ПУЭ;
  • имеется электросвязь с шиной заземления.

Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.

Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.

Железобетонный фундамент в качестве естественного заземлителя
Железобетонный фундамент в качестве естественного заземлителя

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор — расстояние между заземляющими электродами. В формулах расчёта заземления этот фактор описывается величиной «коэффициент использования».

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов — для модульного
  • не менее 7 метров — для электролитического

Материал, требуемый для устройства контура

Собирать контур можно из металлического материала:

  1. уголка,
  2. полосок, имеющих определенные размеры.

После установки заземления его обязательно должен проверить эксперт из независимой измерительной лаборатории. Строительную арматуру можно использовать в качестве естественного контура при наличии ее в несущих конструкциях здания. ПЭУ содержит специальный список конструкций, которые можно использовать в качестве естественного контура при создании защитных систем.

Для проверки работы всей конструкции необходимо общее значение и сопротивление вертикальных заземлителей и всей системы проверить специальными приборами. Доверить эту работу нужно независимым экспертам из электролаборатории. Чтобы конструкция надежно защищала весь объект, следует регулярно проводить замеры, проверяя их значение установленным нормативам.

No related posts.

Похожее:   Прокладка кабеля в земле

Жми «Нравится» и получай только лучшие посты в Facebook ↓

Поделиться на FacebookПоделиться в ВКПоделиться в ОКПоделиться в TwitterПоделиться в Google Plus <хедер class="entry-хедер">

Сервис расчёта вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надёжность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).

Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:

  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Для того, чтобы приступить к расчёту, перейдите по ссылке.

Смотрите также:
Почему вертикальные заземлители нельзя располагать…
Электролитическое заземление в вечномерзлых грунта…
Электролитическое заземление в средней полосе Росс…
Анализ нормативного документа ФЕДЕРАЛЬНЫЕ НОРМЫ И …

Консультация и вопросы от технического центра ZANDZ.com

(К сожалению, мы не консультируем частных лиц)

Пн-Пт,
7:00-16:00
Мск Дмитрий Красноборов
class=»nomargin»>
Технический специалист по молниезащите и заземлению
info@zandz.com
+7 (495) 134-3351
Чат в WhatsApp (ссылка)
Чат в WhatsApp (QR код)
Чат в Telegram (ссылка)
Чат в Telegram (QR код)
Чат в VK
Чат в Facebook

Пн-Пт,
9:30-18:00
Мск Денис Поздняков
class=»nomargin»>
Технический специалист по молниезащите и заземлению
info@zandz.com
+7 (495) 134-3351
Чат в WhatsApp (ссылка)
Чат в WhatsApp (QR код)
Чат в Telegram (ссылка)
Чат в Telegram (QR код)
Чат в VK
Чат в Facebook

Пн-Пт,
9:00-18:00
Мск Михаил Шуин
class=»nomargin»>
Менеджер по продуктам «Молниезащита и заземление»
info@zandz.com
+7 (495) 134-3351
Чат в WhatsApp (ссылка)
Чат в WhatsApp (QR код)
Чат в Telegram (ссылка)
Чат в Telegram (QR код)
Чат в VK
Чат в Facebook

Расчеты для устройства искусственного заземления

Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.

Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.

Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:

  • отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы;
  • подобрать наиболее подходящую конфигурацию заземлительной системы;
  • выбрать правильный план действий.

Расчет контура заземления для защиты электрооборудования
Расчет контура заземления для защиты электрооборудования

Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.

Пример расчета заземления на калькуляторе

Предположим, что наш дом расположен на черноземных почвах с толщиной пласта 0.5 м. Мы живем на юге России в четвертой климатической зоне. Предположительно, в качестве заземлителей будут использоваться 5 вертикальных электродов диаметром 0.025 м и длиной 2 м, горизонтальные стержни на глубине 0.5 м – длиной 2 м с шириной полки 0.05 м.

Тогда, перенеся все значения в калькулятор расчета заземления мы получим общее сопротивление на растекание равное 4.134 Ома.

Если в нашем частном доме однофазная сеть с напряжением в 220 Вт, то это значение недопустимо, так как этого заземления будет недостаточно.

Добавим еще один вертикальный электрод и получим значение 3.568 Ом. Это величина нам вполне подходит, а значит такое заземление гарантировано защитит вашу постройку и ее обитателей.

Если вы получаете значение близкое к критическому, то лучше увеличить количество или размер электродов. Помните, что расчет контура заземления крайне важен для безопасности!

Распиновка витой пары 8 проводов: цветовая схема

Обжим витой пары
Провода и Кабели <хедер class="entry-хедер">

Расчёт необходимого количества заземляющих электродов

Проведя обратное вычисление получим формулу расчёта количества электродов для необходимой величины итогового сопротивления сопротивления (R):

Формула расчета количества заземления
где:
] [ — округление результата в бОльшую сторону.
R – необходимое сопротивление многоэлектродного заземлителя (Ом)
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования

Вклад соединительного заземляющего проводника здесь не учитывается.

Маркировка проводов и кабелей

Маркировка проводов и кабелей
Провода и Кабели <хедер class="entry-хедер">

Допускаемые значения сопротивления заземления, согласно нормативам

Существуют единые нормативные значения, по которым сопротивление растекания тока для электросети с определенным значением напряжения не должно превышать установленных стандартов ГОСТа. В сетях с напряжением в 220 В оно не должно быть больше 8 Ом. При напряжении в 380 В его значение должно быть не выше 4 Ом.

Расчет заземляющего устройства

Для расчета показателей всего контура можно использовать формулу R= R0/ ηв*N, в которой:

  • R0 уровень токопроводимости для одного электрода;
  • R —показание уровня препятствования прохождению тока для всей системы;
  • ηв — коэффициент использования защитного устройства;
  • N — количество электродов во всем контуре.

Клеммы WAGO для соединения проводов

Клемники
Электропровода <хедер class="entry-хедер">

Cопротивление изоляции кабеля: нормы и таблица

Как измерить сопротивление провода в изоляции
Электропровода <хедер class="entry-хедер">

Формула расчёта одиночного заземлителя

Существует ряд факторов, влияющих на окончательный результат расчёта заземляющей конструкции, а именно:

  • Используемые материалы (решающие значение имеет вид металла, но немаловажным могут быть и показатели электролита);
  • Форма элементов-электродов (влияет незначительно);
  • Расстояние между элементами электродами;
  • Глубина, на которую погружается монтируемый контур.

Необходимо отметить, что для получения системы, имеющий сопротивление в 4–8 Ом, применяемые металлические элементы должны обладать определёнными минимальными параметрами:

  • Плоская балка — 12 мм в ширину, 4 мм в высоту;
  • Уголок — 4 мм в высоту
  • Шест — диаметр не менее 10 мм;
  • Труба — толщина не менее 3.5 мм.

Расчёт защитного заземления можно провести при помощи специализированного программного обеспечения или онлайн-калькуляторов. Но для их правильного использования необходимо знать общую формулу, по которой проводятся вычисления и значение всех переменных. Традиционно в рассматриваемой формуле используются следующие обозначения:

  • R — расчётное заземление (Ом);
  • L — протяжённость заземляющего элемента-заземлителя (м);
  • d — диаметр элемента (м);
  • T — заглубление: расстояние между от середины каждого заземляющего элемента до поверхности грунта (м);
  • ρ — сопротивление грунта (Ом×м). Смотрите таблицу.
  • π — число Пи (3.14)

Расчёт такого типа контура заземления производится по такой формуле:

Формула 1

Заземление 2

Измерить все перечисленные значения не составить большой трудности, за исключением разве что параметра ρ. Произвести эту процедуру можно самостоятельно при помощи Омметра, но нужно понимать, что полученные данные могут существенно изменяться при изменении температуры, влажности и других параметров окружающей среды. Поэтому гораздо удобнее будет воспользоваться усреднёнными табличными данными:

Тип грунта Параметр сопротивление грунта в диапазоне от –5 до –20°С
Песок 5000–11000
Супесь 1100–1500
Влажная глина 550–3000
Каменистая глина 1000–12000
Известняк 3000–12500
Торф 500–1000
Суглинок 1200–3500

Формула расчёта системы заземлителей

С целью достижения оптимального значения сопротивления создаваемой конструкции одиночные заземлители можно расположить в ряд или сформировать из них замкнутый контур (круг, прямоугольник или любую другую фигуру). Для расчёта такого заземления в указанную выше формула войдут дополнительные параметры:

  • R1 — искомое сопротивление (Ом);
  • R — сопротивление, вычисленное по базовой формуле (Ом);
  • N — число элементов в системе заземлителей;
  • Ки — коэффициент использования.

О последнем параметре необходимо рассказать подробнее. Вокруг каждого электрода, используемого для заземления электрического тока, можно представить воображаемую зону, в которой его эффективность достигает 90 %. Она формируется из всех точек, удалённых от поверхности электрода на расстояние, равное его длине. При расчёте заземление необходимо избегать пересечения этих зон, что позволяет достичь максимального коэффициента полезного действия формируемой системы.

Заземление 3

Для подсчётов удобнее всего пользоваться табличными значениями, полученных в результате практического применения формулы.

Система заземления при расположении электродов последовательно
Расстояние между электродами (где L это длинна используемого электрода) Количество заземляющих элементов в системе Коэффициент использования
L 5 0.7
L 10 0.6
L 15 0.53
L 20 0.5
2L 5 0.81
2L 10 0.75
2L 15 0.7
2L 20 0.67
Система заземления при размещении электродов в замкнутый контур
Расстояние между электродами (где L это длинна используемого электрода) Количество заземляющих элементов в системе Коэффициент использования
L 5 0.65
L 10 0.55
L 15 0.51
L 20 0.45
2L 5 0.75
2L 10 0.69
2L 15 0.66
2L 20 0.63

Сама же формула выглядит следующим образом:

Формула 2

Таким образом, если предварительно вычислить переменную и взять её за константу, то по данной формуле можно вычислить оптимальный набор электродов, необходимый для создания заземляющей конструкции:

Формула 3

При это стоит учитывать, что скорее всего полученное значение будет дробным, поэтому его необходимо будет округлить в большую сторону.

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлитель
одиночный вертикальный заземлитель
Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления
Расчет заземления
Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей
сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивление
удельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:
определение количества стержней
определение количества стержней

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

формула расчета вертикальных штырей
формула расчета вертикальных штырей

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Факторы сопротивления заземления

ИС 10 — прибор для измерения сопротивления заземления

Расчет защитного заземляющего устройства зависит от многих условий, среди которых можно выделить основные, которые используются при дальнейших расчетах:

  • Сопротивление грунта;
  • Материал электродов;
  • Глубина закладки электродов;
  • Расположение заземлителей относительно друг друга;
  • Погодные условия.

Сопротивление грунта

Сам по себе грунт, за несколькими исключениями, обладает низкой электропроводностью. Данная характеристика меняется, в зависимости от содержания влаги, поскольку вода с растворенными в ней солями является хорошим проводником. Таким образом, электрические свойства грунта зависят от количества содержащейся влаги, солевого состава и свойств грунта удерживать в себе влагу.

Структура грунта

Распространенные типы грунта и их характеристики

Тип грунтаУдельное сопротивление ρ, Ом•м
Скала 4000
Суглинок 100
Чернозем 30
Песок 500
Супесь 300
Известняк 2000
Садовая земля 50
Глина 70

Из таблицы видно, что удельное сопротивление может отличаться на несколько порядков. В реальных условиях ситуация осложняется тем, что на разных глубинах тип грунта может быть различным и без четко выраженных границ между слоями.

Материал электродов

Эта часть расчетов наиболее проста, поскольку при изготовлении заземления используется только несколько разновидностей материалов:

  • Сталь;
  • Медь;
  • Обмедненная сталь;
  • Оцинкованная сталь.

Медь в чистом виде не используется по причине высокой стоимости, наиболее часто применяемые материалы – это чистая и оцинкованная сталь. В последнее время все чаще стали встречаться системы заземления, в которых используется сталь, покрытая слоем меди. Такие электроды имеют наименьшее сопротивление, которое имеет хорошую стабильность во времени, поскольку медный слой хорошо сопротивляется коррозии.

Наихудшие характеристики имеет ничем не покрытая сталь, поскольку слой коррозии (ржавчина) увеличивает переходное сопротивление на границе электрод-грунт.

Обмедненные электроды

Глубина закладки

От глубины закладки электродов зависят линейная протяженность границы касания электрода и грунта и величина слоя земли, который участвует в цепи протекания тока. Чем больше этот слой, тем меньшее значение сопротивления он будет иметь.

На заметку. Кроме этого при установке электродов следует иметь в виду, что чем глубже они располагаются, тем ближе будут находиться к водоносному слою.

Расположение электродов

Данная характеристика наименее очевидна и трудна для понимания. Следует знать, что каждый электрод заземления имеет некоторое влияние на соседние, и чем ближе они будут расположены, тем меньше будет их эффективность. Точное обоснование эффекта довольно сложное, просто следует его учитывать при расчетах и строительстве.

Проще объяснить зависимость эффективности от количества электродов. Здесь можно привести аналогию с параллельно соединенными резисторами. Чем их больше, тем меньше суммарное сопротивление.

Расположение заземлителей в один ряд

Погодные условия

Наилучшие параметры заземляющее устройство имеет при повышенной влажности грунта. В сухую и морозную погоду сопротивление грунта резко возрастает и при достижении некоторых условий (полное высыхание или промерзание) принимает максимальное значение.

Обратите внимание! Для того чтобы минимизировать влияние погодных условий, глубина закладки электродов должна быть ниже максимальной глубины промерзания зимой или доходить до водоносного слоя для исключения пересыхания.

Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

контурзаземления в виде треугольника
контурзаземления в виде треугольника

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

линейная схема контура заземления
линейная схема контура заземления
Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

модульно-штыревое заземление
модульно-штыревое заземление
Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Комплект модульно-штыревого заземления
Комплект модульно-штыревого заземления
Комплект модульно-штыревого заземления

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Что мы должны иметь по окончанию расчета

После проведения вычислений по используемым формулам удается получить точное сопротивление заземляющего устройства искусственного типа. Измерить данные показатели у естественных систем часто не удается из-за невозможности получить точные типоразмеры закопанных коммуникаций, колей, кабеля или уже установленных металлических конструкций.

Расчёт защитного заземления формула

По окончании расчетов удается получить точное количество стержней и полос для контура, которые помогут создать надежную систему защиты для используемого оборудования и всего объекта в целом. Расчеты помогут также установить точную длину соединяющих стержни полосок. Основным результатом всех проведенных вычислений станет получение итогового значения свойств используемых в созданном контуре проводников, которое определяет силу проходящего по ним электрического тока. Это важнейший норматив ПЭУ, который имеет определенные значения для сетей с разными показателями напряжения.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Методика расчета

М416: измеритель сопротивления заземления

Основным параметром расчета является необходимое значение сопротивления заземления, которое регламентируется нормативными документами, в зависимости от величины напряжения питания, типа электроустановок, условий их использования.

Строгий расчет защитного заземления, который дает значения количества и длины электродов, не существует, поэтому он выполняется на основе некоторых приближенных данных и допусков.

Для начала учитывается тип грунта, и определяется примерная длина электродов заземления, их материал и количество. Далее выполняется расчет, порядок которого следующий:

  • Определяется сопротивление растекания тока для одного электрода;
  • Рассчитывается количество вертикальных заземлителей с учетом их взаимного расположения.

Одиночный заземлитель

Сопротивление растекания тока рассчитаем, согласно формуле:

Формула 1

В данном выражении:

ρ – удельное эквивалентное сопротивление грунта;

l – длина электрода;

d – диаметр;

t – расстояние от поверхности земли до центра электрода.

При использовании уголка вместо трубы или проката принимают:

d = b·0.95, где b – ширина полки уголка.

Эквивалентное сопротивление многослойного грунта:

Формула 2

где:

  • ρ1 и ρ2 – удельные сопротивления слоев грунта;
  • Н – толщина верхнего слоя;
  • Ψ – сезонный коэффициент.

Сезонный коэффициент зависит от климатической зоны. Также в него вносятся поправки, в зависимости от количества использованных электродов. Ориентировочные значения сезонного коэффициента составляют от 1.0 до 1.5.

Количество электродов

Необходимое количество электродов определяется из выражения:

n = Rз/(К·R), где:

  • Rз – допустимое максимальное сопротивление заземляющего устройства;
  • К – коэффициент использования.

Коэффициент использования выбирается. в соответствии с выбранным количеством заземлителей, их взаимного расположения и расстояния между ними.

Рядное расположение электродов

Отношение расстояния между электродами к их длинеКоличество
электродов
Коэффициент
1 4
6
10
0,66-0,72
0,58-0,65
0,52-0,58
2 4
6
10
0,76-0,8
0,71-0,75
0,66-0,71
3 4
6
10
0,84-0,86
0,78-0,82
0,74-0,78

Контурное размещение электродов

Отношение расстояния между электродами к их длинеКоличество
электродов
Коэффициент
1 4
6
10
0,84-0,87
0,76-0,80
0,67-0,72
2 4
6
10
0,90-0,92
0,85-0,88
0,79-0,83
3 4
6
10
0,93-0,95
0,90-0,92
0,85-0,88

Не всегда расчет контура заземления выдает необходимое значение, поэтому, возможно, его потребуется произвести несколько раз, изменяя количество и геометрические размеры заземляющих электродов.

Компоненты защиты

Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.

В системе имеются такие элементы:

  1. Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
  2. Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
  3. Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.

Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.

Устройство треугольного контура заземления
Устройство треугольного контура заземления

Расчёт заземления в виде нескольких электродов

Расчет заземления многоэлектродного
Расчёт заземления (расчёт сопротивления заземления) для нескольких электродов модульного заземления производится как расчёт параллельно-соединенных одиночных заземлителей.

Формула расчёта с учетом взаимного влияния электродов — коэффициента использования:

Формула расчета многоэлектродного заземления
где:
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
N – количество электродов в заземлителе

Вклад соединительного заземляющего проводника здесь не учитывается.

Принципы и правила вычислений

Грунт — один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.

При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.

Определение подходящего контура

Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.

Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.

Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.

Выбор схемы заземляющего контура
Выбор схемы заземляющего контура

Расчет параметров проводников

Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.

Сопротивление вертикальных электродов определяется их длиной. Другой параметр — поперечные размеры — не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).

При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.

Расчет количества вертикальных заземлителей
Расчет количества вертикальных заземлителей

Что выбрать: количество электродов или их длину — решать организатору работ. Однако на этот счет есть определенные правила:

  1. Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
  2. Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.

Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.

Подключение телефонной розетки

Монтаж розетки
Электропровода <хедер class="entry-хедер">

Экономное расходование материала

Выбор оптимальной схемы заземлителя
Выбор оптимальной схемы заземлителя

Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:

  • трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
  • уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров);
  • круглая сталь (диаметр от 12 до 16 миллиметров).

В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.

Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.

Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).

Экономичный вариант устройства заземляющего контура
Экономичный вариант устройства заземляющего контура

Источники

  • https://220.guru/electroprovodka/zazemlenie-molniezashhita/raschet-zazemleniya.html
  • https://zandz.com/ru/raschet_zazemleniya/
  • https://pauk.top/raschet-zazemleniya.html
  • https://kalk.pro/electricity/earthing/
  • https://ProFazu.ru/provodka/bezopasnost-provodka/raschet-zazemleniya.html
  • https://FishkiElektrika.ru/raschet-zazemleniya
  • https://amperof.ru/bezopasnost/raschet-zazemleniya.html

[свернуть]

Related Posts